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Abstract

Chip level multithreading is growing in use
throughout the microprocessor world as evi-
denced in the Intel Pentium 4 and the up-
coming innovations in the POWER architecture.
These processors typically use a few coarse grain
threads that can be difficult for the program-
mer or compiler to exploit; however, Process-
ing in Memory (PIM) is a technology that has
been explored through a long series of supercom-
puter projects as a facilitator for a different mul-
tithreaded execution models. In the multithread-
ing model explored by PIMs, the threads can
have radically different characteristics. Specif-
ically, PIMs seek to exploit a large number of
very fine grained threads to hide memory access
latency and increase parallelism. PIM supports
these small threads, or ”threadlets”, by providing
a fast hardware synchronization mechanism, sup-
port for harware managment of creation and de-
struction of threads, and a ”shared register” ap-
proach which extends the shared memory thread
model. This paper discusses some analysis of
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some very large scientific codes in terms of how
they might be mapped onto such a multithread-
ing model with a focus on extremely fine grain
threads.

1. Introduction

Multithreading is growing in popularity as a
mechanism to increase the utilization of proces-
sor resources. The Intel Pentium 4 and the up-
coming Power5 architectures include some sup-
port for multithreading so that one thread may
continue while another thread waits on memory.
The success of these techniques depends on the
ability to provide a small number of loosely syn-
chronized threads to execute and to provide ad-
equate bandwidth to feed data to those threads.
One aspect of the Cray Cascade project, which
is part of the DARPA HPCS program, is to con-
sider Processing-In-Memory (PIM) technology
that drastically increases the memory bandwidth
available, dramatically decreases the granularity
of the threads executed, and provides fine grain
synchronization between the threads.

PIM technology [18, 19, 10, 23, 22] (also
known as IRAM [25], merged memory and logic
[11], etc) , as discussed here, involves a signif-



icant change in the way systems are built. In-
stead of using separate components for processing
and memory, PIM assumes one. Large amounts
of processing logic are placed on the same die as
dense memory macros, and together form a single
part type modular computer building block. The
first such parts that implemented multiple com-
plete CPU+memory nodes on a single chip are
now over a decade old [17, 33] and a great many
alternative architectures geared explicitly for such
technology have been proposed [9, 24, 12] and
some built or in the process of being built, such as
the Mitsubishi MRD32, Micron Yukon, DAMM,
and Blue Gene/C[5].

Some novel execution models have been pro-
posed for PIM that involve new variants of multi-
threading, where threads are not tied to a sin-
gle CPU, but instead are allowed to be initiated
and executed on processing logic in the vicinity
of the data being processed. Examples of such
novel models include the work that led to the
parcel model of the HTMT and DIVA projects
[32, 15], the concept of a microserver as a PIM
node memory-resident manager of remote initi-
ations [10], and of threads that can move from
memory to memory [22].

Given the growing interest in multithreading
technology and the potential for the emergence
of a supercomputer architecture that supports
extremely fine grained threads (referred to as
“threadlets” in this paper), a number of ques-
tions emerge. For example: what exactly are the
thread-type metaphors that might be applicable to
such models, how often do they appear in real
codes, and what are their characteristics. This pa-
per provides some early answers to these ques-
tions, and lays the foundation for ongoing exper-
iments into novel PIM-supported microarchitec-
tural design points. Further, it does so not in the
context of SPEC-like benchmarks, but in terms of
some very large scientific codes. These codes rep-
resent the workloads that run on modern super-
computers and that are expected to run on super-
computers in the near future.

In terms of organization, the next section
presents some multithreading background and a
definition of the types of threads discussed in this
work. Section 3 addresses the thread extraction
process used in the analysis, and the key parame-
ters that were measured. Section 4 discusses the
applications and some of their basic characteris-
tics. Section 5 then addresses the overall results
in terms of thread specific characteristics. Finally,
Section 6 outlines the key observations that are
derived from this, and lays the path for continu-
ing work in the area.

2. Threadlets

Multithreading is a natural match for the type of
latency tolerance required by a PIM system. It al-
lows for concurrency to be discovered by the pro-
grammer and compiler, rather than the hardware.
It also allows the latency of memory accesses
and pipelining to be masked by the available
threads, rather than by more complex hardware-
oriented schemes. In contrast, most multithreaded
architectures focus on a small number of rela-
tively large threads that are used to increase total
throughput, rather than to mask memory latency.
For example, Intel’s Hyperthreading [21] or the
multithreaded PowerPC[8] support precisely this
type of server-oriented workload. The Cray (Tera)
MTA[6], on the other hand, has explored using
large numbers of relatively small threads, with ex-
tremely light weight fork, join, and synchroniza-
tion mechanisms.

This paper focuses on the opportunities for par-
allelism in very tiny threads or threadlets with fine
grain support for thread creation, destruction, and
synchronization. This is similar to other paral-
lelism limit studies[31, 20], except that it is tar-
geted towards fine-grain multithreaded PIM sys-
tems, in which the threads are primarily identified
by the compiler. Threadlets exist within a basic
block, which is a sequence of instructions occur-
ring between two branch instructions in the pro-
gram trace. This restriction serves to eliminate
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Figure 1. A thread spawns two
threadlets (a), each of size 3. Syn-
chronization is required whenever a
value is produced by one thread (b) and
consumed by another (c).

control dependencies. The threadlet consists of
the original set of instructions (generated by a typ-
ical compiler) along with fork and join operations
(signifying the beginning and end of a threadlet)
and a set of synchronizations (Figure 1). Syn-
chronizations are required whenever one threadlet
produces (Figure 1(b)) a value which another
threadlet consumes (Figure 1(c)). This value may
be stored to a memory location by one threadlet
and then loaded by another, or it may be an integer
or floating point register value computed by one
threadlet and then used by another. To ensure cor-
rectness, there must be a synchronization mech-
anism to ensure that the consuming threadlet has
some way of knowing if the producing threadlet
has not yet produced the required value so it can
wait for the required data. Thus, threadlets serve
to extract potential concurrency from a serial pro-
gram. By examining a program trace, we are able
to quantify all the opportunities for threadlet cre-
ation as a motivation for compiler writers. Fur-
thermore, the characteristics of threadlets identify
the critical architectural features required for their

execution.
To efficiently support low-level threading, a

fast hardware supported synchronization mecha-
nism must be provided. One such mechanism is
the Full/Empty Bit (FEB), as used in the Cray
MTA[13] or the Sparcle [4] processors. FEBs at-
tach an extra bit of state to each word in memory
to designate if that word is “full” or “empty.” A
thread which produces a data value sets the word’s
state to “full” when it stores the value. Consum-
ing threads check the word’s state before complet-
ing a load. If the word is not full, the consuming
thread will block. Because this mechanism is sup-
ported by hardware and accessing a word’s status
is an atomic operation with the data access this
mechanism can be very low cost.

FEBs can also be included on registers[34] al-
lowing multiple threads to share the same regis-
ter context. Sharing registers reduces the num-
ber of hardware register contexts required to sup-
port a given number of threads and it also reduces
the costs of synchronization by not requiring data
to be moved to and from memory. Shared reg-
ister contexts is similar to the minithreads in the
��� SMT architecture [29].

To generate these threadlets, the program is
transformed to consist of a large master thread,
which forks off small threadlets opportunisticly
(Figure 1(a)). These threads consist of perhaps
half a dozen instructions, and may share state with
larger threads (requiring programmer or compiler
specified synchronization within the register file)
and perform data driven synchronization (simi-
lar to the full/empty bit mechanism used in the
MTA). Unlike the MTA, the actual threadlet state
is extremely tiny (consisting minimally of a pro-
gram counter and program status word).

The program trace is split into threadlets by
constructing a data dependency graph, identify-
ing the synchronization points, and applying the
thread extraction algorithm given in Section 3.
The dependency graph itself provides significant
useful information about the potential concur-
rency available in the program: the graph’s width



provides a measure of the maximum potential
concurrency, and its height represents the critical
path through the dependency graph (or shortest
execution time).

One challenge of threadlets is that the relative
number of required synchronizations increases
with decreasing thread size. That is, groups of
instructions which would normally have executed
sequentially (within a thread) now require syn-
chronization to coordinate. While the synchro-
nization mechanism is provided by the architec-
ture and is very low cost, for threads to make
forward progress enough data must be available.
Thus, this paper examines the characteristics of
synchronization points between threads as well as
the thread’s general architectural characteristics.

3. Methodology

The goal of the threadlet extraction process is to
take an instruction trace of a serial program and
transform the trace into a parallel multithreaded
trace in a realistic manner. Traces are gathered
using the amber instruction trace generator for
PowerPC[7]. These instruction traces were then
converted to an architecture independent format
called TT7 for further analysis. Data dependen-
cies between instructions in the TT7 traces where
identified, and a data dependency graph was gen-
erated (see Figure 2(a)). A “steering” partitioning
scheme[35, 30], originally developed to distribute
instructions between clusters in a multicluster ar-
chitecture [14], was adapted to partition the data
dependency graph into separate threadlets.

Once the data dependency graph has been gen-
erated threadlet extraction begins. To avoid deal-
ing with control dependencies, threadlets are only
extracted within a basic block. The trace is
scanned again, and basic blocks are identified
(Figure 2(b)). Partitioning is performed on each
basic block as it is identified.

Each instruction in the basic block is analyzed
to find an optimal threadlet assignment. The num-
ber of threadlets to extract from the block is de-

fined by a variable. A parameter � is set to deter-
mine the target thread size. The heuristic attempts
to extract as many threads of size � from the
block as possible. For each threadlet, a “score” is
computed based upon the number of parents (in-
structions which the current instruction depends
on) already assigned to the threadlet (Figure 2(c))
and an estimated “load” for the threadlet, indicat-
ing the number of instructions that threadlet still
needs to process (Figure 2(d)). The instruction is
assigned to the threadlet with the best score, and
the process begins again for the next instruction
in the basic block.

This partitioning scheme attempts to mini-
mize the need for synchronization between the
threadlets, and achieve effective load balancing.
To further reduce synchronization penalties, the
heuristic “prefers” synchronizations between in-
structions which are further apart in program or-
der. If an instruction must synchronize with an-
other instruction which is earlier in program or-
der, then there is a greater chance that the par-
ent instruction will have already completed, and
that the child threadlet will not have to block. For
these reasons, the steering-based approach to par-
titioning tended to give better results than stan-
dard graph partitioning algorithms, such as those
used in the METIS library [16].

4. Benchmarks

Scientific applications tend to be significantly
different from common processor benchmarks.
As such, it has become common in the course of
supercomputer procurements to specify a set of
applications as targets for the new machine. Ex-
amples of this include the ASCI Purple Bench-
mark Suite[1] and the “ ��� ” list for ASCI Red
Storm1. This section describes three applica-
tions that were selected from the ASCI Red Storm
“ ��� ” list as well as another significant consumer

1This is a list of 10 applications that are expected to run
7 times faster on ASCI Red Storm than on ASCI Red.
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of compute cycles at Sandia (LAMMPS). For
each application, the input sets are also described.

4.1. LAMMPS

LAMMPS is a classical molecular dynamics
(MD) code designed to simulate systems at the
atomic or molecular level[27, 26, 28]. Typical ap-
plications include simulations of proteins in so-
lution, liquid-crystals, polymers, zeolites, or sim-
ple Lenard-Jones systems. It runs on any parallel
platform that supports the MPI message-passing
library or on single-processor workstations. Ver-
sion 2001 is written in Fortran90 and consists of
approximately 30,000 lines of code2.

In a typical simulation, some combination of
the features of LAMMPS is used. Thus, four dif-
ferent input problems that demonstrated different
characteristics were chosen for analysis. These
were:

� Lennard Jones Mixture with a baseline NVE
ensemble — This input simulated a 2048
atom system consisting of three different
kinds of atoms running for 500 timesteps in
an ensemble that holds the number of atoms
(N), volume (V) and energy (E) constant.

� Lennard Jones System with Induced Flow
— A small two dimensional simulation
with 210 atoms pinned between two fixed
walls. The upper wall moves to induce Cou-
ette flow in the mobile atoms. This uses
the same kernel computation as the previ-
ous Lennard Jones simulation, but intro-
duces new boundary conditions.

� Bead-Spring Polymer Chains — This is a
simulation of a simple system with molec-
ular bonds. Two types of idealized, 50-
length, bead-spring polymer chains using
different bead sizes are simulated along
with some free monomers. The polymer

2This text adapted with permission from
http://www.cs.sandia.gov/ sjplimp/lammps.html.

chains first push off from each other for
10000 timesteps and then equilibrate for
10000 timesteps. The simulated system
includes 810 atoms and runs for 20000
timesteps.

� Liquid-Crystal Molecules — A 6750 atom
collection of 27 liquid-crystal molecules
was simulated for 100 timesteps. Columbic
forces were solved for via particle-mesh
Ewald (an FFT-based solver). This simu-
lation exercises many of the core computa-
tional routines in LAMMPS.

4.2. CTH

CTH is a multi-material, large deforma-
tion, strong shock wave, solid mechanics
code developed at Sandia National Laborato-
ries. CTH has models for multi-phase, elas-
tic viscoplastic, porous and explosive materi-
als. Three-dimensional rectangular meshes; two-
dimensional rectangular, and cylindrical meshes;
and one-dimensional rectilinear, cylindrical, and
spherical meshes are available. It uses second-
order accurate numerical methods to reduce dis-
persion and dissipation and produce accurate, ef-
ficient results. CTH is used extensively within
the Department of Energy laboratory complexes
for studying armor/anti-armor interactions, war-
head design, high explosive initiation physics and
weapons safety issues. It is implemented in For-
tran and consists of approximately 500,000 lines
of code.

CTH has two fundamental modes of operation:
with or without adaptive mesh refinement (AMR).
Adaptive mesh refinement changes the applica-
tion properties significantly and is useful for only
certain types of input problems. Therefore, we
have chosen one AMR problem and one non-
AMR problem for analysis. In addition, a third
problem was chosen for analysis that significantly
reduces the computational requirements for the
equation of state. These test problems are:



� CuSt — This input problem simulates a
4.52 km/s impact of a 4 mm copper ball on
a steel plate at a 90 degree angle. Adaptive
mesh refinement is used in this problem.

� Explosively Formed Projectile (EFP) —
The simulation represents a simple Explo-
sively Formed Projectile (EFP) that was de-
signed by SNL staff. The original design
was a combined experimental and modeling
activity where design changes were evalu-
ated computationally before hardware was
fabricated for testing. The design features
a concave copper liner that is formed into
an effective fragment by the focusing of
shock waves from the detonation of the high
explosive. The measured fragment size,
shape, and velocity is accurately (within
5%) modeled by CTH.

� 2 Gas — This problem uses an
��� � ��� � ���

mesh. The simulated space contains two
gases intersecting on a 45 degree plane.
This problem uses a very simple equation
of state.

4.3. ITS

The Integrated TIGER Series (ITS) is a suite
of codes to perform Monte Carlo solutions of
linear time-independent coupled electron/photon
radiation transport problems. It can simulate
problems with or without the presence of macro-
scopic electric and magnetic fields in multimate-
rial, multidimensional geometries. Individual par-
ticles are tracked with independent particle his-
tories. Thus, particle transport is assumed to be
a linear process in which individual particles do
not interact with each other, or alter the medium
in which they transport. The current version of
the code supports two modes of geometry inputs:
combinatorial geometry (CG) and CAD. The CG
mode provides a custom input format for describ-
ing problem geometries as constructions of sim-
ple geometric primitives such as spheres, boxes,

and cylinders. The CAD mode uses the ACIS
library[2] to import problem descriptions directly
from CAD drawings. The use of the ACIS li-
brary to extract problem geometries can signifi-
cantly change the computational characteristics of
the problem; thus, one problem was tested in both
geometry modes. The ITS code base is approxi-
mately 66,000 lines of source code including both
Fortran and C++.

The test problem used for this analysis models
the Saturn x-ray source at Sandia National Labs.
In some experiments with the Saturn facility, elec-
tron currents are generated and directed at a “con-
verter”. This converter is composed of tantalum
and aluminum components. The electrons interact
with the tantalum via bremsstrahlung interactions
that produce photons. Most of the photons escape
the tantalum and pass through the aluminum and
are used to irradiate the experimental device. The
electrons, however, are unable to pass through the
aluminum. The test problem used models this
converter; thus, it models the conversion of elec-
tron radiation into photon radiation.

4.4. sPPM

The sPPM benchmark is part of the ASCI Pur-
ple benchmark suite[1] as well as the ��� ap-
plication list for ASCI Red Storm. It solves a
3D gas dynamics problem on a uniform Carte-
sian mesh using a simplified version of the PPM
(Piecewise Parabolic Method) code. It represents
the current state of ongoing research, which has
demonstrated good processor performance, excel-
lent multithreaded efficiency, and excellent mes-
sage passing parallel speedups. The hydrodynam-
ics algorithm involves a split scheme of X, Y, and
Z Lagrangian and remap steps that are computed
as three separate passes or sweeps through the
mesh per timestep. Each sweep through the mesh
requires approximately 680 FLOPs to update all
of the state variables for each real mesh cell. The
sPPM code is written in Fortran 77 with some
C routines and contains a total of approximately



4000 lines of code.
The problem solved by the sPPM involves a

shock propagating through a gas with a density
discontinuity. A plane shock traveling up the +z
axis encounters a density discontinuity, at which
the gas becomes denser. The shock is carefully
designed to be simple, though strong (about Mach
5). The gas initially has density 0.1 ahead of the
shock; over 5dz at the discontinuity, it changes to
1.0. For a qualitative idea of the computation, see
the volume renderings at [3]3.

4.5. Benchmark Comparison

Instruction traces were gathered for each of
these benchmarks. Table 1 summarizes some key
characteristics of the benchmark traces. Trace
Size refers to the number of instructions captured
for analysis. % Traced (inst) indicates the num-
ber of instructions captured as a percentage of all
instructions executed. % Traced (data) indicates
the number of 4K data pages touched in the cap-
tured trace as a percentage of the total number of
data pages accessed by the full run of the program.
Mean Basic Block is the arithmetic mean of the
basic block sizes. Unique Inst. pages indicates
the number of memory pages which contained
instructions executed during the trace. Unique
Data pages shows the number of pages contain-
ing data which was loaded or stored during the
trace. For both Unique Inst. and Unique Data
pages, a 4K page size was assumed.

These applications show several traits common
to scientific codes. Most striking is the large ba-
sic block size. Unlike many conventional applica-
tions that have mean basic block lengths of only
a few instructions, these benchmarks frequently
have basic block sizes of over a dozen instruc-
tions. Other than ITS, basic block sizes range
from 9.06 to over 20.

The applications also tend to be very data in-

3This text adapted with permission from
http://www.llnl.gov/asci/purple/benchmarks/limited/sppm/
sppm.readme.html.

tensive, accessing hundreds to thousands of data
pages and dozens of instruction pages. All of the
applications, except sPPM, spend at least 40% of
their instructions accessing memory (Figure 3).
sPPM, being a benchmark and dealing with dense
matrices, has somewhat lower memory require-
ments.

LAMMPS and CTH Integer ALU instruc-
tions tend to be dominated by addition, subtrac-
tion, multiplication and shifting operations (Fig-
ure 3). Divides are infrequent. ITS, having more
branches, spends more time in comparison and
logic operations operations. sPPM contains fewer
integer ALU operations, and these tend to be
mainly logical operations, most likely due to sim-
plified address generation with dense matrices.

Floating point instructions are dominated by
addition, subtraction and multiplications. In all
but the CTH 2gas experiment these account for
roughly 65% to 85% of floating point instructions
(Figure 3). The CTH 2gas is also unique in the
high number of floating point divides it performs
- nearly 18%.

4.6. Graph Widths and Parallelism

A good measure of the potential parallelism
available in these applications is be gained by
analysis of the data dependence graphs of the
trace. If instructions are nodes in this graph and
data dependencies form the edges between them,
we can find the average width of this graph by
dividing the total number of instructions in the
trace by the maximum height of the graph. This
graph width tells us the average number of in-
structions which could be scheduled in parallel,
assuming perfect knowledge of the program and
perfect branch prediction. Another useful statis-
tic is the width of the data dependency graph with
control dependencies. To calculate this, we as-
sume that all the instructions in one basic block
must complete before instructions from the next
basic block can begin executing. This has the ef-
fect of elongating the graph because instructions



Benchmark Abbrev Trace
Size

%
Traced
(inst)

%
Traced
(data)

Mean
Basic
Block

Unique
Inst.
pages

Unique
Data
pages

Dhrystone 1.1 NA NA NA NA 4.28 NA NA
gcc.122 NA NA NA NA 5.37 NA NA

LAMMPS lj nve lmp.nve 420M 23% 100% 18.72 163 344
LAMMPS poly chain lmp.poly 500M 12% 42% 21.79 45 118
LAMMPS big pppm lmp.big 500M 3% 3% 16.76 54 124
LAMMPS langevin lmp.flow 253M 100% 100% 13.94 177 187
CTH 2Gas cth.2gas 500M 3% 16% 9.06 23 4268
CTH AMR cth.amr 500M � 1% 8% 13.21 349 1575
CTH efp3d cth.efp 500M � 1% 38% 11.83 146 7805
ITS brems cg its.cg 415M 100% 100% 5.56 186 651
ITS brems CAD its.cad 500M 20% 36% 5.77 184 449
sPPM sppm 500M � 1% 17.95 5 53

Table 1. Benchmark Statistics for traces. Dhrystone and gcc.122 shown for comparison.
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from different basic blocks cannot be executed in
parallel.

An analysis of the traces reveals a significant
potential for parallelism. Half of the benchmarks
have a graph width of 6-8, and the remaining ap-
plications have a width of 8-12 (Figure 4). Once
control dependencies are added in, much of this
potential parallelism is reduced. Seven of the
benchmarks fall in the 3-4 range. ITS, with its
smaller basic block sizes, falls slightly below this
and sPPM slightly above.

At the basic block level, all applications are
dominated by basic blocks with widths in the 1-5
range (Figure 5). Basic blocks with widths greater
than 10 are generally orders of magnitude less
likely to appear. This distribution is reflected in
the overall graph width with control dependencies
for the applications, which tend to be less than 4
(Figure 4).

5. Results

In order for threadlets to be a viable com-
putational paradigm, it must be possible to cre-
ate threadlets that expose a significant amount of
the inherent application parallelism without being
overwhelmed by synchronization. This section
explores the amount of parallelism that threadlets
can extract from a basic block as well as the syn-
chronization points between those threadlets. An
analysis of the nature of those threadlets in terms
of basic instruction types is also presented as a
foundation for designing architectures that lever-
age threadlets.

5.1. Synchronization

The threadlet extraction process attempts to
limit the number of values which are produced in
one threadlet and consumed in another threadlet
and thus require synchronization (see Section 3).
It also tries to maximize the distance between data
production and consumption, so values are com-
puted earlier and consuming threadlets will not

have to block as frequently. It is preferable to
share a value that has already been produced, and
will not require threadlets to block, than to have
fewer dependencies that require more blocking.
Though the average threadlet requires a number
of values from other threadlets (Figure 6 and Ta-
ble 2), many of these values will already have
been computed. Additionally, because a number
of threadlets may all consume the same value the
number of unique values produced tends to be
much lower than the number of times a value is
shared (Figure 7). For example, in Figure 1 the
main thread produces a value in register 1 that is
consumed by two threadlets. Reuse of integer val-
ues is especially common. The average unique
shared integer value is consumed by more than 3
threadlets (Table 2).

Threadlets that appear to produce or consume
no data can be caused by a number of conditions.
One artifact of the tracing process is that data that
is generated outside of the trace (i.e. program in-
put) or that is written but not consumed during the
trace does not require synchronization. Threadlets
that resolve branch instructions may not produce
any data. Threadlets that use constants (i.e. load
immediate) may not consume data and threadlets
that perform “safety” initializations of data struc-
tures may produce data that is never consumed.

5.2. Threadlet Composition

As would be expected, threadlet lengths cor-
respond closely to the target threadlet length (p)
given to the partitioning algorithm (Table 2). De-
viation from the target length is caused by the load
balancing requirements.

The threadlets generated show a diverse range
of compositions. Figure 8 shows a breakdown
of the frequency of different compositions of
threadlets for the LAMMPS lj.nve benchmark.
The trends in the LAMMPS compositions were
similar to those found in other benchmarks, so
they have been averaged in Figure 9.

A number of threadlets contain no floating



cth.amr cth.efp its.cg its.cad sppm
0

2

4

6

8

10

12

G
ra

ph
 W

id
th

lmp.lj.nve lmp.poly lmp.big lmp.flow cth.2gas
0

2

4

6

8

10

12

G
ra

ph
 W

id
th

Maximum
With CD

Figure 4. Data dependency graph width

1−2 2−3 3−4 4−5 5−6 6−7 7+
0

1

2

3

x 10
7

Basic Block Graph Width

N
um

be
r 

of
 B

as
ic

 B
lo

ck
s

cth.amr
cth.efp
its.cg
its.cad
sppm

1−2 2−3 3−4 4−5 5−6 6−7 7+
0

1

2

3

x 10
7

Basic Block Graph Width

N
um

be
r 

of
 B

as
ic

 B
lo

ck
s

lmp.lj.nve
lmp.poly
lmp.big
lmp.flow
cth.2gas

Figure 5. Basic block data dependency graph widths
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Figure 6. Histogram of values consumed per threadlet
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Figure 7. Histogram of values produced per threadlet



Mean Std. Dev.
Measurement p=4 p=8 p=16 p=4 p=8 p=16

Integer Instructions 1.73 3.76 7.83 1.43 2.05 3.44
FP Instructions 0.52 1.22 2.52 1.12 1.82 3.16
Memory instructions 1.41 3.21 6.74 1.36 1.74 3.19
Threadlet length 3.66 8.19 17.09 2.09 1.80 2.15

Integer Registers Produced 1.47 3.12 6.88 5.19 7.70 11.85
FP Registers Produced 0.23 0.49 0.98 1.25 1.62 2.15
Memory locations Produced 0.35 0.74 1.50 2.51 4.07 6.26
Total Values Produced 2.07 4.35 9.36 3.45 5.25 8.28

Integer Registers Consumed 2.01 4.52 9.38 1.47 2.17 3.71
FP Registers Consumed 0.31 0.69 1.55 0.86 1.24 2.02
Memory locations Consumed 0.59 1.34 2.75 0.83 1.41 2.44
Total Values Consumed 2.91 6.54 13.68 1.32 2.36 4.45

Unique Integer Values Produced 0.45 0.95 1.70 0.70 0.93 1.53
Unique FP Values Produced 0.16 0.29 0.48 0.41 0.57 0.82
Unique Memory Values Produced 0.34 0.74 1.48 0.61 1.02 1.52

Table 2. Statistics Summary. � indicates the target threadlet length for the extraction
heuristic.

point operations, most likely due to the relative
scarcity of floating point operations when com-
pared to memory or integer instructions. Those
threadlets which do contain floating point tend to
mix floating point and memory instructions more
than floating point and integer.

The most common class of threadlet com-
prises all memory or integer operations, usually in
roughly equal proportions. Threadlets which are
50% memory and 50% integer account for 10%
of all threadlets generated across the application
set and parameter sizes. All memory and integer
threadlets that have less than a 16% majority of
integer or memory operations account for 61% of
generated threadlets.

As the target threadlet size grows, the compo-
sition of threadlets becomes more diverse and we
encounter more threadlets with different composi-
tions. For example, when the target size is 4, only
9.2% of threadlets contain at least one floating
point, integer, and memory operation. When the

target size is 8, 17.9% of threadlets are mixed and
when the target size is 16, 28.7% are mixed. This
is because larger threadlets yield a greater num-
ber of possible permutations exist, and so a more
diverse set of threadlet types can be extracted.

5.3. Parallelism Extracted

These threadlets manage to reveal a large por-
tion of the available parallelism. We can compute
the graph width of the programs after threadlet ex-
traction in a manner similar to that used in Sec-
tion 4.6. To find the widths of the threaded code,
we assume that instructions within a threadlet
must be executed sequentially, and that we have
sufficient hardware to do so. The width of the
graph of the extracted threadlets is a large por-
tion of the maximum graph width with control
dependencies (Figures 10 and 4). Smaller target
threadlet sizes expose more parallelism because
fewer instructions are serialized. With a target
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Figure 8. LAMMPS lj nve Threadlet Compositions: Size of the dot shows the frequency of
threadlets of that composition appearing.
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Figure 9. All threadlet compositions



cth.amr cth.efp its.cg its.cad sppm
0

20

40

60

80

100

A
ch

ie
ve

d 
gr

ap
h 

w
id

th

lmp.lj.nve lmp.poly lmp.big lmp.flow cth.2gas
0

20

40

60

80

100

A
ch

ie
ve

d 
gr

ap
h 

w
id

th

Found (p=4)
Found (p=8)
Found (p=16)
Found (p=32)

Figure 10. Percentage of average
graph width, with control dependencies,
achieved by steering-based threadlet ex-
traction

threadlet size of four, 80% or more of the po-
tential parallelism is revealed for seven of the 10
benchmarks. A target threadlet size of eight of-
ten achieves more than 60% of the unthreaded
graph width. ITS and sPPM are exceptions to
these trends. In ITS, this is due to a small basic
block size which limits the potential for threading.
sPPM has a higher than normal maximum graph
width (with control dependencies) and it may be
that the load balancing element of the threadlet
extraction heuristic prevents this from being fully
exploited.

6. Conclusions and Future Work

Scientific applications differ from the standard
benchmarks that are used to evaluate processor ar-
chitectures. They tend to have larger basic blocks
and touch a larger amount of data during exe-
cution. This paper evaluates four such applica-
tions in the context of emerging support for mul-
tithreading in supercomputing architectures. Such
support is slowly appearing in commodity micro-

processors and is being taken to the next level
in advanced architecture research funded through
the DARPA HPCS program. The results present
an interesting view into the ability to extract new
levels of parallelism from important scientific ap-
plications through fine grain multithreading. In
addition, the data indicates that conservative com-
piler approaches that only consider parallelism
within a basic block could extract many of the fine
grained threadlets.

This work will serve as a basis from which to
develop new processor technologies and new su-
percomputer architectures. Going forward, this
project will focus on using the data collected to
architect PIM processors that can exploit the par-
allelism discovered, and as the basis for automatic
threadlet extracting compilers. With further anal-
ysis, the data is expected to provide insights into
the right microarchitectural decisions for a PIM
and appropriate mechanisms for threadlet startup
and inter-threadlet synchronization.
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